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On the non-linear mechanics of wave disturbances in 
stable and unstable parallel flows 

Part 2. The development of a solution for plane Poiseuille 
flow and for plane Couette flow 

By J. WATSON 
National Physical Laboratory, Teddington, Middlesex 

(Received 1 June 1960) 

In  Part 1 by Stuart (1960), a study waa made of the growth of an unstable in- 
finitesimal disturbance, or the decay of a finite disturbance through a stable 
infinitesimal disturbance to zero, in plane Poiseuille flow, and that paper gave 
the most important terms in a solution of the equations of motion. The greater 
part of the present paper is concerned with a re-formulation of this problem which 
readily yields the complete solution. By the same method a solution for Couette 
flow is obtained. This solution is only a formal one for the present because the 
conditions imposed in deriving the solution may not be valid for Couette flow; 
this flow is believed to be stable to infinitesimal disturbances of the type 
considered. 

1. Introduction 
The object of this paper is to extend Stuart’s work in Part 1 (1960) to give the 

full solution and to  apply a similar analysis to give a formal solution for plane 
Couette flow. The analysis presented is a modification and extension of that used 
by Stuart. Briefly the method used is to represent the stream function by a 
Fourier series in the co-ordinate parallel to the direction of flow and equate each 
component, giving an infinite set of partial differential equations in two variables. 
This infinite set of equations is then solved by assuming a separable solution, 
thereby reducing the set to one involving only ordinary differential equations, 
some of which are solved by the method of perturbations, using ci aa the small 
parameter. The most important concept introduced by Stuart and used here is 
that, in the separable solution mentioned above, an undetermined time amplitude 
function replaces the exponential function of linear theory and this amplitude 
function is chosen to make the series converge for a greater range in time than 
the range for which the linear theory may be said to be valid. In  other words, 
by this choice of the time amplitude function the major terms in the solution will 
represent the behaviour of the disturbance for a greater range in time than does 
the linear disturbance. 

24-2 
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2. Fourier analysis of governing equations 

pressible flow between parallel planes may be written in the form 
The Navier-Stokes and continuity equations for two-dimensional, incom- 

1 
R u,+uu,+wu, = - p x + -  (uxx+u,,), (2.1) 

1 
w, + "WZ + ww, = -p, + - (wxx + w,,), (2.2) 

(2.3) 

where x denotes the distance parallel to  the planes, z the di&ancenoxmt&to them 
measured from the channel centre, u, w the corresponding velocity components, 
p the pressure, R the Reynolds number and t the time. The suffices indicate 
differentiation. All quantities have been made non-dimensional, the reference 
length being half the distance between the planes (h) ,  the reference velocity being 
the maximum velocity in steady flow ( Uo), the reference time being h/Uo, and the 
reference pressure being pU& where p is the density of the fluid. The Reynolds 
number is R = Uoh/v, where v is the kinematic viscosity. The fundamental 
solutions for steady flow are as follows: 

(i) For flow under a pressure gradient between fixed planes (plane Poiseuille 

R 
ux + w, = 0, 

flow), 2 
u = 1-22, w = 0, - p  = - - p  = 0. (2.4) R' 

(ii) For flow under no pressure gradient between the planes in constant 
relative motion (plane Couette flow), 

u = 2 ,  w = 0, -p ,  = 0, - p , =  0. (2-5) 

In  case (i) the type of infinitesimal disturbance considered is one which is travel- 
ling in the direction of flow (in the positive x direction) having a stream function 
of the form 

(2.6) 

where c = c, + ic, (c, 2 O ) ,  the symbol - denotes a complex conjugate, and C is 
an arbitrary constant. 

I n  case (ii) the type of infinitesimal disturbance considered is composed of two 
disturbances travelling in opposite directions with stream function of the form 

II. = C$.,(z) exp [ia(s - ct)] + C$,(z) exp [ - ia(z - ~ t ) ] ,  

$ = C$.,(z) exp [ia(x - ct)]  + C$,(z) exp [ - ia(x -at)] 

+ C$,( - z )  exp [ia(x + ~ t ) ]  + C$l( - z )  exp [ - ia(s + ct)] ,  (2.7) 

where C is an arbitrary constant. It is found that in turbulent Couette flow the 
mean flow is antisymmetric so that although a disturbance of the form (2.6) is 
possible, it  would not in general lead to an antisymmetrical mean flow while 
(2.7) does. 

The linear equation for $.,, together with the homogeneous boundary con- 
ditions corresponding to the vanishing of the velocity components on the planes, 
constitute an eigenvalue problem to determine c as a function of a and R. There 
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will in general be a sequence of values of c and of corresponding eigenfunctions, 
foisiven a and R. In  case (i) for given a, R in the supercritical region it 

appears that there is only one unstable infinitesimal disturbance, that is, there 
is only one eigenvalue c with ci positive; furthermore, this corresponds to an 
eigenfunction which is an even function of z. Now in the non-linear theory the 
convergence of the solution obtained is expected to be most rapid when that c is 
chosen where ti has the smallest magnitude. To this eigenvalue corresponds an 
eigenfunction and the associated infinitesimal disturbance is used as a basis in 
the non-linear theory. It might be expected that the desired eigenvalue c in 
subcritical Poiseuille flow corresponds to an eigenfunction which is even in 2. 

Accordingly, for this flow, that infinitesimal disturbance is chosen which has 
the algebraically largest value of ci for even eigenfunctions. 

The stream functions representing infinitesimal disturbances in Poiseuille 
and Couette flow both involve the sum of terms of the form f ( z , t ) e i a x  and 
P(z, t )  e - i a X .  These stream functions satisfy the linear equations exactly but when 
the non-linearity of the equations is not neglected each disturbance reacts with 
itself and with the main flow, generating higher harmonics of the form 

f n ( z ,  t )  eniax (n = f 2,  & 3, . . .). 
It therefore appears permissible to expand the stream function of the flow when 
non-linearity is included as a Fourier series in 2. 

Let the stream function for the flow be represented as the Fourier series, 
m 

n= 1 
@(x, z, t )  = 7 + 4’ = $(z, t )  + x {$n(z, t )  eniax + q$&, t )  eenbX}. (2.8) 

m 

n= 1 
Then 

and 

where U ( z ,  t )  = &, uA(z, t )  = q5nz, wA(z, t )  = -niaq5, (n 2 1). 

In  linearized theory $represents the steady stream function and the other part 
of the right-hand side of (2.8) reduces to (2.6) or (2.7), which represents the 
disturbance stream function. I n  the non-linear theory the sum on the right-hand 
side of (2.8) represents the finite disturbance while $ is the mean stream function, 
where the mean is taken with respect to x over the wavelength of the disturbance, 
2n/a. The expressions (2.9) and (2.10) are to be substituted into (2.1) and (2.2),  
and the Fourier components are to be equated. In  order that the pressure 
gradients shall balance the remaining terms the pressure must be of the form 

u = ii + u’ = ~ ( z ,  t )  + 2 {.A(., t )  eniax + .iiA(z, t )  e-niaz}, 

w = w’ = 2 (wA(z, t )  eniax+ tZA(z, t )  e-nim), 

(2.9) 

(2.10) 
m 

n= 1 

p = zp*(t)  +p**(z, t )  +p’(z ,  2, t )  
m 

n= 1 
= zp*(t) +p**(z, t )  + I; {pn(z, t )  eniax +$,(z, t )  e-niax]. (2.11) 

The conditions to be applied are (i) that the mean velocity T i  assumes the same 
values on the walls as does the undisturbed velocity, (ii) that the disturbance 
velocities, u‘, w’, vanish at the walls, and (iii) that  a suitable condition on the 
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mean pressure gradient in the flow direction or, equivalently on the meanvelocity. 
Hence, for Poiseuille flow, 

or 

and, for Couette flow, 

U = l  at z = 1 ,  U = - 1  at z = - 1 ;  

# , , = # , = O  at z = f l  (n=1,27.. . ) .  (2.13) 

Substitute (2.9), (2.10) and (2.11) into (2.1) and (2.2) and equate components. 
The equations arising from equating the terms independent of x are equivalently 
found by taking the mean of equations (2.1) and (2.2), and these are (Stuart 

(2.14) 
1956 a, b )  

1 -  
R 

- _ _  
ii, + u'uj, + w'u; = -p* + - u,,, 

UIWj, + w'w:. = -p:*. 
- _ _  

(2.15) 

It is readily seen that these may be written in the form 

- - 1 -  
u, + (UIW'), = -p* + R - us,, (2.16) 
- 
(w'2), = -p,t*. (2.17) 

The terms (m)z and (p), are the Reynolds stress terms and they represent 
the effect of the disturbance on the mean motion; in the linear theory they are 
neglected. The disturbance equations are found on subtracting (2.14) from (2.1) 
and (2.15) from (2.2) and they are (Stuart 1956a, b )  

(2.18) 

(2.19) 

1 
R u; + zu; + W'U, + x1 = - pj, + - (ULZ + u;,) f 

w;+zw;+x, = - p , + - ( w ~ + w ~ , ) ,  

XI = UIUj, i- W'UL - u'u;, - W'UL, 

x2 = u'wj, + w'w; - ulw; - w'w;. 

1 1  
R 
-~ 

where (2.20) 

(2.21) 

The quantities x1 and xZ are the non-linear parts of the disturbance equations 
and they are neglected in the linear theory. 

The equation of continuity will be automatically satisfied when use is made of 
the stream function (2.8). The dependent variables U, q$,, p' are determined from 
the three equations (2.16), (2.18) and (2.19); p* is to be determined by condition 
(iii) above. Integration with respect to z of (2.17) then gives p** to within an 
arbitrary additive function of time. 

- _ _  

In terms of the stream function (2.8), equation (2.16) is 

(2.22) 
1 -  m 

n= 1 
zt+ia c N # n z $ n - # n $ n z ) z  = -P* + j j ~ z s *  

Eliminate p' between (2.18) and (2.19) by differentiating the former with respect 
to z, the latter with respect to x and substracting one from the other. The stream 
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function (2.8) is inserted into the resulting equation and the nth (n  2 1) com- 
ponent is selected, yielding 

where the operator L?(na) is 

where it is understood that the summations from m = 1 to m = n -  1 are to be 
omitted when n = 1, and where a prime indicates differentiation with respect to z. 

The next step is to determine $fi, and ;ii from the infinite set of partial differential 
equations (2.22) and (2.23) in two variables. From this stage the analysis for 
Poiseuille and Couette flow differ, although the principles are the same. The 
difference is due to the difference in form of the infinitesimal disturbances (2.6) 
and (2.7) which form the basis of the subsequent analysis. The simpler case, that 
of Poiseuille flow, will be dealt with in $ 2.1 and Couette flow in $2.2. 

2.1. Solution for Poiseuille Jlow 
A solution of the equations of motion is sought which represents a small finite 
diaturbance with time-dependent amplitude and with the property that, as the 
amplitude tends to zero, the disturbance tends through the infinitesimal dis- 
turbance (2.6) to zero (as t + k co, according to whether the flow is subcritical 
or supercritical). Therefore, as the amplitude tends to zero, the disturbance 
stream function, $‘, given in (2.8), must tend to the infinitesimal value (2.6), 
so that, on comparing components, $1 N C$-,(z) e--iact, while $n -+ 0 (n  > 1) 
more rapidly. It appears from this that a solution might be obtained in which 
q5n (n 2 1) is ‘separable ’ and we look for such a solution. It is therefore expected 
that the highest-order term in q51, t ha t  which approaches as the 
amplitude tends to zero, will be of the form A(t) $l (z) ,  where A(t) is some, pos- 
sibly bounded, function which behaves like C e-iact as A -+ 0. If there exist finite 
disturbances which are in equilibrium, then we expect to find a set of such dis- 
turbances such that as the neutral curve is approached the equilibrium amplitude 
tends to zero. In  any case we look for a solution in which IAl is small. Since 
$2 + 0 more rapidly than does dl as A -+ 0, then $z must be of smaller order 
than IAl. In  fact, in the right-hand side of (2.23) for n = 2, the terms depending 
on only are of order q5! or IAIz and occur only in the form of the product of A2 
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with a function of z. If it  is assumed for the moment that the remaining terms are 
of lower order, then the main term in q52 is expected to be of the form A2@2(z). 
From the fact that A is proportional to e-iaci as A -+ 0, it follows that 

--f -iac as A 3 0. 
1 dA 
A dt 
_ _  

If then we look for a solution for which ( l /A)  dA/dt is a function of A and 
then i t  follows that 

only, 

- = - iacA + smaller-order terms. 
dA 
at 

To the highest order, the departure of U from the steady laminar value, ZT, = 1 - z2, 
is found from (2.22) retaining only the highest-order term in q5, in the sum and 
if this difference is to be separable then it is readily seen that i t  must be of the 
form U - Uz = AAj1(z) + smaller-order terms. 

Returning now to (2.23) for n = 1, we have that the highest-order terms on the 
right-hand side are of the form of the product of A2A with a function of z (arising 
from terms like q5&&), provided that the remaining terms are of smaller order 
than this. The highest-order terms on the left-hand side being of order A must 
cancel out; that is, the coefficient of A in q5, will satisfy a certain differential 
equation. Dividing (2.23) with n = 1 by A and letting A +- 0, we see that this 
differential equation is 

namely the Orr-Sommerfeld equation determining the eigenfunction @l, which 
is what we would expect as the coefficient of A .  Hence (2.23) with n = 1 serves 
to determine the second highest-order term in q51. It is readily seen that this 
term is expected to be of the form A2A@,,(z), provided that dA/dt is of the form 

dA 
- = - iacA + al A2A + smaller-order terms, 
at 

where a, is some constant. It can be shown that the assumption of a solution 
in the form 

(2.1.2) I q5, = A@, + A2A@,, + smaller-order terms, 

q52 = A2e2  + smaller-order terms, 

G = Gl + AAfl + smaller-order terms, 

_ -  - a, A + a, A2A + smaller-order terms (a, = - iac) 
dA 
at 

leads to no inconsistency. In  fact further investigation of (2.22) and (2.23) 
suggests that we look for a solution ii, q52, . . ., of the form 

with 

(2.1.3) 

(2.1.4) 
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where a, (m 2 1) are unknown constants, which also leads to no inconsistency, 
aa we shall see. The above arguments are related to, and are a generalization of, 
those given by Stuart (1960), who looked for a solution of the same form as 
(2.1.3), (2.1.4) and (2.1.5), but retained only those terms necessary to give the 
first approximation to the solutions. 

Aresult neededis the differentialequation satisfied by ( A  I , and this is now given. 
The conjugate of (2.1.5) is 00 

- = B c a",(A(2", 
dt m=O 

(2.1.6) 

and the equation for the amplitude of A follows by multiplying (2.1.5) by A, 
(2.1.6) by A and adding the results, giving 

where am = am, + iami. It is evident that I A I is monotonic in time between these 
values which are zeros of the right-hand side of (2.1.7); we shall be interested 
primarily in the range of JAI2 between zero and the fist non-zero positive root 
of the right-hand side of (2.1.7). 

Returning to (2.23), it is readily shown that, on making the substitution 
(2.1.3) and (2.1.4) andusing (2.1.5) and (2.1.7)' theleft-handsidemay bewritten 
in the form 

where 

(2.1.8) 

(2.1.9) 

It is easily seen that the right-hand side of (2.23) also contains An as a factor. 
Hence, dividing both sides of (2.23) by An, rearranging terms and using the fact 
that a, = -iac, we find that (2.23) becomes 

2iCi 
L(na)($n+ m= 5 1 1 ~ 1 2 m $ n m ] - y  m= CI 1 mIA12m($:rn-n2a2$nrn) 

n-1 m 

m= 1 m= 1 
- z (n -m)  $,($,-m-(n-m)2a2~n-m)] + I: IA12mgnrn(z) (n 2 11, 

(2.1.10) 

where the summations from m = 1 to m = n - 1 are omitted when n = 1, and 
where gn, is a definite known functiont of the $'s, f ' s  and a's appearing in (2.1.3) 
to (2.1.5). Now (2.1.10) must be true at all times for which the solution con- 

t The function gnm is given explicitly by Watson (1959). 
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verges and so for all 1 A I sufficiently small. Hence the coefficients of like powers 
of IAI2 in (2.1.10) must cancel out. Similarly, on using (2.1.7), the equation of 
mean motion (2.22) becomes 

(2.1.11) 

in which the coefficients of like powers of IAI2 must cancel as in (2.1.10). It 
follows from this equation that p*, a function of time only, must be of the form 

00 

p* = C kn]A12n, 
n=O 

in which the k’s are real and k,  = 5;/R = -2/R. The constants k,  (n > 1) are 
completely arbitrary and so must be specified in some way. The simplest case is 
chosen, namely, that kn (n > 1) is zero, which corresponds to the condition that 
the mean pressure gradient in the flow direction does not change with time.t 
, Equating the terms independent of /A1 in (2.1.10), we obtain the equation 

1 n-1 

L (na )kn  = ; 2 m$m($~-m-(n-m)2a2$L_,) 
I - 1  n- 1 

m= 1 
- c (n -m)  $L($:-~ - (n-m)2a2$n-m)], (2.1.12) 

which becomes the Orr-Sommerfeld equation, L(a) $, = 0, for n = 1, as an- 
ticipated. The terms independent of \A  I in (2.1.11) already cancel. The balancing 
of the coefficients of I A [ in (2.1.11) leads to the equation 

1 
- f” 2ac, f, = ia($;+, - $l +I)’ (2.1.13) 

on using the result aw = ac,. Equating coefficients of IA12 in (2.1.10) and using 
the result a, = - iac, we get 

R l -  

2ic, 
U n a )  +m1- 7 -n2a2$n1) 

= -(+:-n2a21C.,) +gnl(Z) 

= (%-fi) ($:-n2a2kn) +fi:$n+,[$A+l(R-a2$1) + (n+ 1) $n+l(+?-a2+;) 

ia, 
a 

1 

- (n + 1) $w;+1- (n  + a2$n+1) - $1($Z+1- (n + a2$A+1) 

t An alternative condition to this is that the mass flux does not change with time. This 

f,dz = 0 which determines the k,’s and involves trivial modi- condition reduces to 

fications to the function fm. 
L 
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where again it is understood that the summations from m = 1 to m = n- 1 are 
to be ~ i t t e d  when n = 1. Furthermore, from the coefficients of IAIzm (m > 1) 
in (2.1.11)’ we obtain the equation 

1 
-fG-2macif,, R 

+ mi2 n ($A $nm-n + $Am-, +n 
n= 1 
m-n-1 m-n- 1 

+ I: $ ~ p  gnm-n-p - +A $nm-n - gLw4-n $n - I: g ~ p  $nm-n-p)’] 9 

p = l  p = l  

(2.1.15) 

where the summation from n = 1 to n = m - 2 is to be omitted for m = 2. Also, 
from the coefficients of (m > 1) in (2.1.10), we obtain the equation 

2mici ia, ($Lm -n2a2$nm) = - ($~-n2a2$n)+gnm(z) ,  (2.1.16) 

where gnm is a definite function of the vs, f ’ s  and a’s, and will be a known function 
of z on reaching the stage when this equation is to be solved. 

Having obtained the differential equations satisfied by the functions of z in 
(2.1.3) and (2.1.4), we have still to state the boundary conditions. These follow 
from (2.12) which must be satisfied at all times, so that from (2.1.3) and (2.1.4) 
the boundary conditions are 

$n, $nm, $A, $Arn, f , = O  at z = + 1  (n=1,2 ,... ; m = l , 2  ,... ). 
(2.1.17) 

Moreover, since $l is an even function of z, it  is readily seen from (2.1.12) and 
(2.1.17) that $z is odd, is even and, in general, that $, is even for 
n = 1,3,5, ..., and $, is odd for n = 2,4,6, .... Again with the homogeneous 
conditions (2.1.17) it  is seen from (2.1.13) that fl is even. Similarly, it  can be 
shown from (2.1.14), that $11 is even and, in general, $nl is even for odd values 
of n and odd for even n. By repeating this argument with equations (2.1.15) and 
(2.1.16), it  can be shown that (i) $n, $nm are even functions of z for odd values 
of n and odd functions of z for n even, and (ii) f, are even functions of z. It 
is thus sufficient to solve the problem in, say, the upper half of the channel, 
0 < z < 1, in which case the boundary conditions (2.1.17) become 

21.,, $-,,, $A, $Arn, f m  = O at z = 1 

$’ n, $’ nm, $‘“ n )  $” nm) f’ m = 0 at z = 0 (2.1.18) 

$n, $nm, $:, $:,,, = 0 at z = 0 
With these boundary conditions it is hoped to determine $n, f l , $nl together 
with a1 from (2.1.12), (2.1.13) and (2.1.14), and f,, $nm together with am (m > 1) 
from (2.1.15) and (2.1.16). 

From the homogeneous equation (2.1.1), together with the corresponding 
boundary conditions in (2.1.18), the eigenfunction, $1, is found to within an 

L(na) $nm.- 7 a 

1 (n  = 1,2, ...; m = 1,Z ,... ), 
(n = 1,3,5 ,...; ’m = 1,2 ,... ), 
(n = 2,4,6 ,...; m = 1,2, ...). 
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arbitrary multiple. In  order to make +, definite we follow Stuart in selecting 
that @, for which @,(O)  = 1. Since the right-hand side of (2.1.12) with n = 2 is 
a function of +1 nly, then this fourth-order differential equation for +, together 
with the associated boundary conditions in (2.1.18) determine +2. When +, is 
determined, the function +3 can be determined and in general since the right- 
hand side of (2.1.12) is a function of +,, +,, . . ., +n.-l only, this equation for +n, 
together with the boundary conditions in (2.1.18), serve to determine +,&. In 
other words +,, +3, etc., can be determined successively. In  a similar mannerfl 
is determined from (2.1.13) and the boundary conditions given in (2.1.18). The 
eigenfunction +, is identical with Stuart's (1960), while +, andf, are the same as 
Stuart's +, and f respectively to the order he considered. 

The next step is to solve (2.1.14) with n = 1 subject to the corresponding 
boundary conditions in (2.1. IS). At this stage the right-hand side of this equation 
is known apart from the constant a,. This fourth-order differential equation 
with the four boundary conditions leads to a solution which is linear in a,. By 
some means a,, and correspondingly @,,, must be determined. To this end let 
us first consider the case in which the function A is Ce--iaet. In  such a case, 
a, = a, = . . . = 0, and the equation for $,, becomes 

L(a) $11 - 2iCM1- a",,) = 911. (2.1.19) 

We are interested in a convergent solution for which the function A or IAl is 
small for all time, and we hope to find such a solution near to the neutral curve 
ci = 0. Thus ci will be small, and this fact is used to solve (2.1.19) by expanding 
in c,. On the left-hand side of (2.1.19) the second term will then be small com- 
pared with the first term, which is composed of the Orr-Sommerfeld operator 
acting upon +,,. Hence we may choose four independent parts of the com- 
plementary function, one of which will almost satisfy the boundary conditions, 
that is, it  will almost be the eigenfunction +,. It follows from this that the 
highest-order term in is probably a multiple of $, and moreoever that the 
multiple will tend to infinity as ci --+ 0. Accordingly, we look for a solution of the 
form 

(2.1.20) 

where p is a positive integer and +.lip), @$iP+'), . . . are bounded as ci -+ 0. Now it 
is most likely that p = 1, and we shall consider this case. Other cases will be 
dealt with later. The equations to be satisfied by the +ti are 

L(a) $ii" = 0, (2.1.21) 

L(a) $fi = g,, + 2i(fiil)" - LZ'$$T~)), (2.1.22) 

(2.1.23) 1 
L(a) $$? = 2i(@$y" -a2+iy), 

... ... 

... ... 
in which +$il', fiy, ... all satisfy the same boundary conditions as @,,. The 
solution of (2.1.21) is +ill) = A+,, where h is an arbitrary constant. On sub- 
stituting this value into the right-hand side of (2.1.22) we obtain a fourth-order 
differential equation containing the arbitrary constant A. If we define xz, x3, x4 
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to be the solutions of the Orr-Sommerfeld equation satisfying the boundary 

x3 = xj = 0, xi = 1, xz = 0, at z = 0, 

then $,, xa, x3, x4 are four linearly independent solutions of the Orr-Sommerfeld 
equation, of which $1, x3 are even functions of z and x2, x4 are odd. It will be 
necessary to calculate x3, but we do not need to know x2 or x4. Following Stuart 
(1960), we first of all determine h by multiplying (2.1.22) by the known function 

(2.1.24) I Il l  conditions x2 = 0, x; = 1, 2; = x2 = 0, 

x4 = xi = $7 0, 2: = 1, 

Q, = (xi - a2xJ - (xi(1) - a2x3(1)) (I4 - a2$1)/$V) 

(which satisfies the equation adjoint to the Orr-Sommerfeld equation; it also 
satisfies the same boundary conditionst as $,) and integrating with respect to 
z between 0 and 1. This gives 

h = - a)q1,dz/2i a)(v; - a2$,) ax. Jol Jol 
Having determined A, the right-hand side of (2.1.22) is now a completely known 
even function, and since the solution of (2.1.22) is to be an even function, it 
must have the form $$?= A+, -+ Bx3 -t P, 
where P is any even particular integral of (2.1.22). Either of the two conditions 
at the wall will determine B and the other condition at the wall will be satisfied. 
This gives $$? apart from the arbitrary constant A.  Next the value of $$? is 
substituted into the first equation of (2.1.23), which will then contain the un- 
known constant A .  This constant is then determined in exactly the same way as 
h was determined and is found to within an arbitrary constant multiple of $, 
by the procedure just described. In  this way can be determined completely. 

The solution obtained when A(t)  is chosen to be proportional to e-iact converges 
for only a very small interval in time whereas we wish to find a solution which 
converges for all time. The fist step in finding such a solution is to choose a 
suitable value for al. The solution of (2.1.14) with n = 1 subject to the corre- 
sponding boundary conditions in (2.1.18) consists of the sum of the solution of 
(2.1.19) and the solution of 

~ ( a )  $,, - 2ici(kil - a2$,,) = 2 (ki - a",) (2.1.25) 

subject to the same boundary conditions, namely, -(a,/Zac,)$,. Since a, is 
arbitrary, is determined to within an arbitrary additive multiple of +l.$ 

t That W(1) = 0 can be seen by integrating by parts the relation 

J; (x: - a2x3) L(a)  @1dz = 0 

and making use of the identities, L ( ~ ) x ,  z {L(a)x3y 
then, by redefining 

the functions A ,  pnm andfm (m 3 2 )  and rearranging the series (2.1.3), (2.1.4) and (2.1.5), 
a similar series in the new functions is obtained in which $11, $,,, fl are the same as the 
original functions. In  other words the arbitrariness in @ll corresponds to the arbitrariness 
in which the series may be rearranged in this way. The same property occurs in all the 
functions $l,,,. 

0. 
$ It can be shown that, if to any given $rl1 is added a multiple of 
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By choosing a value of a, such that (hlc,) - (a1/2aci) is bounded as ci + 0, we 
shall obtain a function $,, which is also bounded as ci -+ 0. Any such value of 
a, will suffice; in general there is no further restriction on a, which will make the 
series converge more rapidly. We may in f e t  choose a, = 2ah. The solution in 
this case is readily seen to be given by (2.1.20) with p = 1 apart from the first 
term; that is, the solution is 

$11 = $ g + c i f i y +  ... , (2.1.26) 

where fi?, fiy, etc., are found from (2.1.22) and (2.1.23) in which $$il) is to be 
replaced by htl.,. Having determined a, and $,,, the $nl follow successively 
from (2.1.14), andf, follows from (2.1.15) subject to the boundary conditions 
in (2.1.18). 

At this stage g,, is a known function of z. It can be shown that when a, = 0, 
@12 can be expressed as in (2.1.20) with p = 1, where the fl’ are bounded as 
ci -+ 0. It also follows that this function $12 will consist of the sum of an un- 
bounded multiple of $, and a bounded function and, by exactly the same reason- 
ing as given for a, and pll, a, can be chosen to make $la bounded and a, will also 
be bounded. Then $n2 follow successively (gnz being a known function of z when 
the equation for $nz is to be solved) andfs, after which $13 and a3 are similarly 
determined. We cannot proceed in this way indefinitely for, in (2.1.16) with 
n = 1, although ci is assumed to be very small, ultimately m is so large that mci is 
no longer small and we can no longer apply the reasoning given immediately 
after (2.1.19). However, in such a case we can solve for $lm directly without any 
trouble; when mci is very small, solving for $lm directly leads to ill-conditioned 
algebraic equations and we have to resort to expanding as in (2.1.20), but when 
mci is not small there is no longer any reason why the algebraic equations should 
be ill-conditioned. Hence when mci is not small, in general no particular value 
of a, will make the series converge more rapidly than any other value, and so 
we can specify a, to be zero. Proceeding in this way, all the functions of z and 
all the constants a, in (2.1.3), (2.1.4) and (2.1.5) can be found. It should be 
noted that the degree of convergence of the perturbation series depends upon 
obtaining sufficiently good approximations for the first terms in the expansions. 
This in turn depends upon mci being very small compared with the width of the 
critical layer where the functions vary rapidly. As the width of the critical layer 
is of order (aR)-*, we therefore cannot expect to obtain solutions by means of 
a perturbation series unless m lcil (aR)f < 1. Furthermore, we cannot expect to 
obtain an improvement on linearized theory unless the perturbation series can 
be applied to $ll; this means that we insist on ci being so small that Ici/ (aR)* < 1. 
It then appears that the perturbation series is to be applied as long as 
m Icil (aR)) < 1, but when m is so large that this is not true then a, is specified 
to be zero and the resulting equations are to be solved directly. 

If a,, tends to a non-zero constant as ci --+ 0, then a first approximation to 
JAl is obtained by retaining only the first two terms on the right-hand side of 
(2.1.7). This first approximation is therefore given by 

aci K exp [2acit] 
= ( 1 - u a , ~ e x p [ 2 a c i t ] ) ’  

(2.1.27) 
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in which K is a real arbitrary constant. As /A1 -+ 0, that is, as cit -+ -w, 
I A12 - mi K exp [2ac,t]. But since A - C e--iact as A -+ 0 then we can say that 

ac,K = lC12. (2.1.28) C and K are related by 

The equilibrium amplitude \A  Ie is found, to the first appraximation, from (2.1.27) 

(2.1.29) 
to be 

If a,, turns out to be positive, then this equilibrium amplitude can be found in 
the subcritical case (ci < 0), while if a,, is negative the equilibrium amplitude 
can be found in the supercritical case (c, > 0). The equilibrium amplitude is 
independent of K ,  which is not surprising since the arbitrariness of K or lC/2 
merely reflects the arbitrariness of the origin of time and in any equilibrium state 
lAle will be independent of time. There is therefore no loss in generality if we 
assume that IC(2 = a I c , ~ ,  so that K = sgnci and (2.1.27) becomes 

EC, 

a,, 
IAIe" = --. 

(2.1.30) 

Since IAl is of order Icil) and all the functions of z in (2.1.3),  (2.1.4) are bounded 
then the solution should converge for small enough values of c,, that is, near 
enough to the neutral curve. 

To obtain I A I without approximation, we first of all denote IA I by y and change 
the independent variable in (2.1.7) to  x = exp [2acit] .  Equation (2.1.7) then 

(2.1.31) becomes 

a dash denoting differentiation with respect to x .  From the condition that A 
behaves like Ce-iact as A 3 0 it  follows that IA12exp ( -2aci t )  -+ IC12 = a lcdl as 
cit -+ -a, that is, that y/x -+ a lcil as x -+ 0. We look for a solution of the form 

y = ac,y1+a2c:y2+ ..., (2.1.32) 

where y,, yz ,  ... satisfy the differential equations found on formally equating 
equal powers of ac,. These equations are 

"C, xy' = y(aci + a,,y + a2, y2 + . . .), 

and the boundary conditions to be satisfied are 

The solutions of (2.1.33) which satisfy these boundary conditions are 

(2.1.34) 
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giving the full solution for IAI2 from (2.1.32). It may happen that a,, tends to 
zero as c# -+ 0 in which case IA12 would be of order lcil& at least; IAI2 could be 
found using an analysis similar to that just givep. 

The argument of A follows from (2.1.5) and (dl .6) by multiplying the first by 
l/a, the second by - A / a 2  and adding the resulting equations. Integration of 
the resulting equation yields 

A / A  = D exp ( - 2iac,.t) exp (;ci/ox - 
( j l a m i P )  $), (2.1.35) 

where D is a constant and x, y have the same meanings as in the previous para- 
graph. But since A eiacf -+ C as A -+ 0 then A / A  -+ exp ( - 2iac, t )  Cle as A -+ 0. 
Letting x -+ 0 in (2.1.35) we deduce that D = C / o  so that (2.1.35) may be written 
in the form 

where 

A/i? = C / e  exp [ - Ziavt], (2.1.36) 

is the velocity of the wave and i t  changes with time. As x -+ 0,  that is, as A -+ 0,  
%' -+ c, as it should; while 

1 "  
v + c , - -  amiIAlzm 

a m = l  

as x -+ 00, the value of the wave velocity in the state of equilibrium. When an 
equilibrium state exists, as in the case we are considering, then the same analysis 
shows that there are similar disturbances for IAl > IAle, although probably 
a second equilibrium state could not be calculated. If the equilibrium states 
exist in the supercritical region (ci > 0 ) ,  then these disturbances decay with 
time to the state of equilibrium so that the state of equilibrium is a state of stable 
equilibrium to disturbances of this kind. On the other hand, if the equilibrium 
states exist in the subcritical region (ci < 0) ,  then these disturbances amplify 
with time, so that the state of equilibrium is a state of unstable equilibrium, 
which shows that although the flow is stable to infinitesimal disturbances in this 
region it can be unstable to certain finite disturbances. Note that, because a,,, 
is zero form large enough, the series in (2.1.36) and (2.1.31) are polynomials in ?/. 

This analysis shows how the functions q5n, U given by (2.1.3) and (2.1.4) are 
determined, after which u', w' may be found from (2.9) and (2.10). The part 
p**(z,t) of the pressure in (2.11) is then found to within an arbitrary additive 
function of time from (2.17) as p** = - w'2 when p** is expressed as a series in 

with coefficients as functions of z and coefficients of equal powers of IAI2 
are equated. Similarly, the functions p,(z, t )  in (2.11) are found from (2.18) on 
equating components of eniax, expressing pn(z,t) as the product of An with a 
series in IAI2 whose coefficients are functions of 2, dividing the equation for pn 
by the factor An and equating the coefficients of equal powers of I A I 2. Equation 
(2.19) will then be satisfied automatically. 

We have been considering the most likely case, namely that in which the 
solution of (2.1.19) has the form (2.1.20) with p = 1. It is possible, however, 
that we may find, in the notation used above, that h -+ co as ci -+ 0. Then the 
most probable situation is that in which the form of the solution is given by 

- 
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(2.1.20) with p = 2, in which qii') is proportional to $,. In  this case the most 
probable situation is when the equations to be solved are 

L(a) a?') = 0, (2.1.37) 

L(a) ail) = Zi($&')" -a'$$i')), (2.1.38) 

(2.1.39) 

(2.1.40) 

(2.1.41) 

The solution of (2.1.37) is ${i2) = p$,, where p is an arbitrary constant. Then 

The situation which is being considered is when there exists a solution P (an 

even function of z )  of qa) +iTi) = 2qp; (2.1.42) 

which satisfies the boundary conditions. This situation is most probable in the 
sense that, if a is regarded as fixed, then $,, c,, R most probably are regular 
functions of ci, when qFll has a double pole in ci. In  such a case it can be shown 
that there does exist a solution of (2.1.42) which satisfies the boundary con- 
ditions. Note that h is infinite in this case, for it is readily shown, by multiplying 
(2.1.42) by CD and integrating with respect to z from 0 to 1, that 

L(a) $8 = 911 + Bi($$il"' - ~'@1~1)), 

J 
L(a) q5-g = 2i(@fy - a"$'), 

... ... 

... ... 

(2.1.38) becomes L(a) $&I) = Zi,~(pi - ~'$1). 

[' @($; - a2$J dz = 0.  (2.1.43) 
J o  

It follows from (2.1.42) that 

Then (2.1.39) becomes 
$IT1' = A$, +,UP. 

L(a) $f' = gll + %A(?; - a'$,) + 2ip(P"- a'P). (2.1.44) 

The constant p is now determined in exactly the same way as h was determined 
above; equation (2.1.44) is multiplied by @ and integrated with respect to z 
between 0 and 1, and, after making use of (2.1.43), we obtain 

p = -Iol CDg,,dz/2i~01CD(P"-a'P)dz. 

Having determined p, if P, is any (even) particular integral of (2.1.44) with the 
term in A omitted then, since $$? is to be even, it must have the form 

$$' = Al$,+B1X3+Ap+Pl. 
Either of the two boundary conditions at the wall will determine B,, and the 
other condition at the wall will automatically be satisfied. This gives @@ apart 
from the constants A,, A .  The constant A is determined from the next equation 
in the same way as p has just been determined. Proceeding in the same manner, 
the required solutions of the equations (2.1.37) to (2.1.40) can be found, giving 
the full solution of (2.1.19). 

The solution of (2.1.14) is the sum of the solution which we have just found 
and the function -(a1/2aci)$,. The constant a, is chosen in order to make 
ci$ll bounded as ci --f 0. Since the highest-order terms in $11 are given by 
{ (p /c ; )  - (ul/2aci)} yk1, then ci $,, will be bounded if we choose a, = 2ap/ci. With 

26 FIuid Meoh. 9 
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this choice of a,, both c,$'~ and cia, are bounded while $11 and a, become in- 
finite as ci + 0. The function $1, is given by (2.1.20) with p = 1, where $'&'), 
$$:) are the solutions of (2.1.38) with $iiz) replaced by p$', (2.1.39) and (2.1.40) 
which satisfy the boundary conditions. The functions en,, f 2  are found from 
(2.1.14), (2.1.15) after expressing them in series similar to that for $ll; both 
ci $nl and c, f a  are bounded, and $n,, f 2  become infinite as ci -+ 0. From (2.1.16), 
by using the same arguments as we used for $11, the function $,2 is expressed 

a series similar to (2.1.20) with p = 4, the highest-order term being a multiple 
of 1Cp1, and, by suitable choice of a2 of order 1/c:, $,2 becomes a function of the 
same order. The functions $n2 and f 3  are also of order 114. Similarly, $13 is of 
order c i 6  by suitable choice of a3 (of order c i5 ) ,  etc. For the same reason as given 
above, we insist on c, being so small that lcil (a@ < 1. It then appears that the 
perturbation series is to be applied so long as m /cil (a@ < 1, but when m is so 
large that this is not true then a, is specified to be zero and the resulting equations 
are to be solved directly. The series on the right-hand side of (2.1.7) has been 
reduced to a polynomial in IA 1 2 .  If there is no positive zero of this polynomial, 
then no equilibrium state can be found although the solution may converge 
more rapidly than the linearized solution and so be valid for larger amplitudes. 
On the other hand, if there is a positive zero of this polynomial, then the smallest 
of these will give a definite value of IAIz of order c:, and the analysis applies to 
both the subcritical and supercritical cases. In  this case, in (2.1.3), apart from 
the first term, the first few terms will be of the same order in ci. The convergence 
of the series will depend on how $n,n, f, behave for large values of m (a very rough 
order of magnitude analysis suggests that 1c.,, $%,,, behave satisfactorily for 
large n, if m is regarded as fixed). 

This last remark applies to all the theory presented here. Even if the most 
probable situation occurs (when p = 1 in (2.1.20)), there is no guarantee that 
the series will converge, or even represent a solution asymptotically as ci -+ 0, 
as t becomes large. However, one would expect the theory to be an improvement 
over linearized theory for a range in time, and, moreover, it  does seem likely 
that, if the most probable case arises, the series will either converge or represent a 
solution asymptotically. 

+ smaller-order terms, 
q52 = {A2$-f)(z) + AB$$?(z) + 62fi3'(2)} + smaller-order terms, 

- u = a, + {Ay:')(z) + AAfi2)(z) +-ii2fl3)(z)} + smaller-order terms, 

_ -  - a,A + (ai')A3 + ai2)A2B + al3)ABz + ai4'B3) + smaller-order terms 
at 
dA 

' (2.2.1) 
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It is obvious from this and (2.22) and (2.23) what the form of the full expansion
is corresponding to (2.1.3), (2.1.4) and (2.1.5). When (2.2.1) is substituted into
(2.22) and (2.23), the terms are collected into those of the same order in IAI.
Since, for I.4 1 sufficiently small, J A ) varies monotonically with time, then the
terms of the same order in IA I must balance. Applying this to the highest-order
terms in (2.23) with n = 1, we deduce that

AL(z, a) $bl - AE( - 2, cc) $&( - 2) = 0, (2.2.2)

where L(z, CC)  is the Orr-Sommerfeld operator (2.1.9) with n = 1 and we have
used the fact that ;iz is an odd function of z. Now (2.2.2) can be rewritten in the
form

~L(z,a)~,-t(-z,a)~,(-z)  = 0,

in which A/a varies with time. In order that this equation be satisfied, it follows

that L(z,a)$-,==O, x(--~,a)$,(--z)=O,  w i t h  @r,tii=O a t  z=&l.
(2.2.3)

The second equation is satisfied automatically when the first one is satisfied,
so that (2.2.3) is equivalent to the single equation

L(a)@,=0  w i t h  $1=$i=O  a t  z=+l, (2.2.4)

which is the Orr-Sommerfeld equation for the determination of the eigenfunction
$1. In (2.23) with n = 2, the balancing of the highest-order terms leads to an
equation of the form

A2x1(4  + A&2(4 + A’x&) = 0, (2.2.5)

or w42X1+v/4X2+X3 = 0,

which can only be satisfied if x1 = xz = x3 = 0. In other words, the coefficients
of A2, AK, 62 vanish separately. The equation x1 = 0 is in fact

u24 @’ = - tw4’; - Yw3 (2.2.6)

with the boundary conditions $-$,,’  = tin’ = 0 at z = _+ 1.
For the moment let $,( - z) be replaced by @a(z);  then x8 = 0 yields

with the boundary conditions $f) = $h2)’ = 0 at x = _+ 1. If the sign of z is
changed in the equation x3 = 0, then the complex conjugate of the resulting
equation is (2.2.6) with $$&)(z) replaced by &?)( -z), and the boundary conditions
become $?e)( - z) = @)‘( -2) = 0 at z = of: 1, so that $L3)(  -2) E 7+#)(z)  or

@p(z)  E gp( -2). (2.23)

Equations (2.2.6), (2.2.7) and (2.2.8) determine @), $f), @).
The highest-order terms in (2.22) give an identity since p* is zero and Ed = z.

The second highest-order terms in (2.22) give an equation of the form (2.2.5),
so that again x1 = x2 = x3 = 0. The equation x1 = 0 is
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with the boundary conditionsff) = 0 at z = & 1. Since $&) = g1( - z) ,  the right- 
hand side of (2.2.9) is an odd function of z, so thatff) is also an odd function of z. 
Hence we need only consider the range 0 < z < 1 with the boundary conditions 
fll) = 0 at z = 0 , l .  The equation xz = 0 is 

- If:“)” - 2acifjz) = ia($:g1- $hg2- $2+h)’ (2.2.10) R 
with the boundary conditionsfjz) = 0 at z = f 1. The right-hand sideof (2.2.10) 
is a real odd function of z, and hence so isfiz). Thus we need only consider the 
range 0 < z < 1 with the boundary conditions ff) = 0 at z = 0 , l .  The complex 
conjugate of the equation x3 = 0 is the equation (2.2.9) withfil)(z) replaced by 

Jj3)(2), so that f13)(2) = fIl)(z). (2.2.11) 

Equations ( 2 . 2 3 ,  (2.2.10) and (2.2.1 1) determine fil), f i z ) ,  fj3). 

an equation of the form 

(2.2.1 2) 

from which x1 = x2 = x3 = x4 = 0 as before. The equation x1 = 0 [where it 
may be permissible to remind the reader that $,(z) = pl( - z ) ]  is 

The balancing of the second highest-order terms in (2.23) with n = 1 leads to 

A3x1(z) + AzAxz(z) + AAz,y3(z) + A3x4(z) = 0, 

L(a) 1Mi‘-2c($:y--aZ$iy) = ($)-fjl)) (K-az$l) +fp”$hl 

i6‘” + -2 ( f; - a”J + $p‘ ( p; - a”J + 2 ? f p (  J ;  - aZ&) a 
- Z & ( $ f ) “ -  4aZ$f)) - Gz($L1)”’ - 4az$f)), (2.2.13) 

with $@ = $iy = 0 at z = & 1. The equation xz = 0 is 

L(a) - 2ici($y - a“?) = - - f i 2 ’  (Pi - a2$l) +fi”” $1 r: ) 
+ * - p  ($; - a”z) +fp” $2 + Gyp; - a”l) + 2$f)($? - as$;) (idf3’ 1 
- 2&($&1)” - 4a2$&1)) - gl($L1)” - 4a2$&1)’) + I,@‘(& - azg,) 
+ 2$kz)($; -az&) - 2&($kz)” - 4a2$L2)) - ~ z ( @ $ z ) ” r  - 4a2$i2)’), (2.2.14) 

with $$:) = $#‘ = 0 at z = f 1. Together with (2.2.13) and (2.2.14) there are two 
similar equations x3 = 0 and x4 = 0. Now the solution of (2.2.13) is linear in 
both ail) and 6i4), the coefficient of ail) being - (i/2ac) y91 and the coefficient of 
6i4) being - {i/a(3c + E ) }  g1( - z) ,  both of which satisfy the boundary conditions. 
We are interested in values of a and R which correspond to very small values of 
ci. In  general c,. will not be small, so that the solution of (2.2.13) with ail) and aI4) 
put equal to zero will not become infinite as ci 3 0. Accordingly, no particular 
values of a$’) and 4‘) will make the solution more convergent than any other pair 
of values. Let us then specify that ail) and ai4) be zero, so that is determined 
from (2.2.13) with ail) and ui4) equal to zero. Similarly the solution of (2.2.14) 
is linear in both ai2) and and the 
coefficient of 6i3) being - (i/2ac) 7,k2. As in the calculation of $-11 in Q 2.1, the 
solution of (2.2.14) with aiz)and ai3)put equal to zero will become infinite as ci -+ 0, 

the coefficient of a\’) being - ( 1/2aci) 
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the highest-order term in the solution being proportional to cy l  $l. No value of 
Ei3) will result in making $1' bounded so that we shall specify ai3) to be zero. 
Then ai2) plays exactly the same role in the calculation of $I? as a, did in the 
calculation of pl1 in $ 2.1; ai2) is chosen to reduce the order of magnitude of fiy 
as ci -+ 0 by exactly the same method. Note that the equation for A is of the same 
form as the equation for A in 5 2.1 up to terms of order IA 1 3 .  From the equations 

+A3$\?( - x ) ) +  ..., 
$2 = (A2$i1)(z) + AB$L2)(z) + Az$f)( - 2)) + . . . , 
u = T i l  + ( A ~ $ ' ) ( z )  + AAfl2)(z) + 6yi1)(~)) + . . . , 

(2.2.15) 

J (2.3.16) 

where we have replaced ai2) by a,. The functions $,, @i2), f i l l ,  f i 2 ) ,  $I?, $f?,) and 
a, are found from (2.2.4), (2.2.6), (2.2.7), (2.2.9), (2.2.10) and (2.2.13) with ail) 
and ai4) zero, (2.2.14) with ais) zero and ai2) replaced by a,. The function A has 
exactly the same form and is calculated in exactly the same way as in $ 2.1. Also 
as in $2.1, a and R must be chosen so that the corresponding values of ci and 
ci(aR)* are sufficiently small for the method to apply. In  Couette flow, which is 
believed to be stable to infinitesimal disturbances, there might be some difficulty 
in finding values of a and R which satisfy these conditions (whereas in Poiseuille 
flow, ci can be made arbitrarily small, more or less independently of (aR)*, by 
choice of a point (a,@ sufficiently close to the neutral curve). Moreover, this 
problem will correspond only to the subcritical problem of Poiseuille flow so 
that, even if suitable values of a and R are found which satisfy the above con- 
ditions, in order to obtain a worthwhile solution a,,, must turn out to be positive 
in the general case. 
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